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Abstract 

Reliable demand forecasts are critical for effective supply chain management. Several endogenous and 
exogenous variables can influence the dynamics of demand, and hence a single statistical model that 
only consists of historical sales data is often insufficient to produce accurate forecasts. In practice, the 
forecasts generated by baseline statistical models are often judgmentally adjusted by forecasters to 
incorporate factors and information that are not incorporated in the baseline models. There are 
however systematic events whose effect can be quantified and modeled to help minimize human 
intervention in adjusting the baseline forecasts. In this paper, we develop and test a novel regime-
switching approach to quantify systematic information/events and objectively incorporate them into 
the baseline statistical model. Our simple yet practical and effective model can help limit forecast 
adjustments to only focus on the impact of less systematic events such as sudden climate change or 
dynamic market activities. The model is validated empirically using sales and promotional data from 
two Australian companies. The model is also benchmarked against commonly employed statistical and 
machine learning forecasting models. Discussions focus on thorough analysis of promotions impact 
and benchmarking results. We show that the proposed model can successfully improve forecast 
accuracy and avoid poor forecasts when compared to the current industry practice which heavily relies 
on human judgment to factor in all types of information/events. The proposed model also 
outperforms sophisticated machine learning methods by mitigating the generation of extremely poor 
forecasts that drastically differ from actual sales due to changes in demand states. 

Keywords: Demand Forecasting; Systematic Events; Time Series Regression Models; Sales 
Promotions; Judgmental Forecasting; Supply Chain. 
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1    Introduction  

Demand forecasts1 are critical pieces of information in supply chain management because numerous 

decisions – such as sourcing, production planning, logistics, inventory management and retail 

decisions – heavily rely on forecasts. In particular, demand forecasting is a key ingredient in sales and 

operations planning (S&OP) which is responsible for continuous alignment between demand plans 

and supply plans (Fildes, Goodwin & Önkal, 2018). Therefore, improving the accuracy of product 

demand forecasts can directly result in better operational efficiency, customer satisfaction, and 

financial savings throughout the entire supply chain (Kremer, Siemsen & Thomas, 2015; Trapero, 

Kourentzes & Fildes, 2015).  

Having historical demand information is beneficial for generating accurate forecasts, albeit is often 

not solely sufficient to forecast to a desired degree of precision (Hyndman & Athanasopoulos, 2014). 

This is because many statistical forecasting models premised on historical data lack the ability to 

explicitly capture the contextual information2 and/or dynamically update as more recent information 

becomes available (Lawrence et al., 2006). Special events such as marketing campaigns, holidays and 

sales promotions are examples of valuable information often not incorporated into univariate 

statistical forecasting models. Particularly, retailer sales promotions have been shown to significantly 

influence consumer behavior and market demand (Trapero, Kourentzes & Fildes, 2015; Trapero et 

al., 2013). Since events such as promotions can lead to non-stationary time series, single static time 

series forecasting methods may not be the most suitable. Hence in practice, the output of such 

methods are merely used as baseline forecasts which are subject to judgmental adjustment by demand 

forecasters (Fildes et al., 2009).  

Using expert judgment in complement to statistically analyzing large amounts of data has been shown 

to be beneficial for improving forecast accuracy (Alvarado-Valencia et al., 2017). Moreover, evidence 

suggests that the human input to forecasts can be improved by providing a systematic approach to 

structure the information utilized when imposing judgment to make adjustments (Franses & 

Legerstee, 2013). For instance, a structured-analogies method is shown to lead to more accurate 

                                                 
1 It is important to note that demand and sales are not always equal (e.g., sales are less than the true demand when stockouts 
occur) (Perera et al. 2019; Tong, Feiler & Larrick, 2018). However, they are treated as equal in the analysis performed in 
this paper because the companies investigated achieve near flawless service levels of 99.5%, on average.  
2 Contextual information refers to non-time series information that is highly relevant to interpreting, explaining and 
anticipating time series behavior. 
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forecasts than when produced with unaided judgment (Green & Armstrong, 2007). Yet no optimal 

procedure exists for structuring the critical information that forecasters must consider and there is no 

definitive answer regarding how to most effectively integrate human judgment with forecasting models 

(Baecke, De Baets & Vanderheyden, 2017). 

In this paper, we aim to contribute to this area by developing and validating a forecasting model that 

can capture the effects of quantifiable systematic events which would otherwise require judgmental 

adjustments. It is important to note that this model is suited for well-defined and well-structured 

systematic events and not well suited for dynamic information that must be incorporated on a case to 

case basis. More precisely, we develop a time series regression model that incorporates some of the 

most significant factors/information considered by forecasters when adjusting baseline forecasts. The 

model takes into account the dynamics of historical base sales and the additional influential factors. 

Our observations in the Fast-Moving Consumer Goods (FMCG) industry have revealed that retailer 

sales promotions are the main reason for forecast adjustments and also most challenging to forecast. 

This is also supported by the academic literature (e.g., Fildes & Goodwin, 2007; Fildes et al., 2009). 

Therefore, we utilize the proposed model to deal with sales promotions, a good exemplar of systematic 

events. The model is able to systematically define various states of demand uplift by analyzing 

historical sales data and different combinations of promotions. The obtained states can then be 

embedded into the model. Although we explore the application of our model to deal with sales 

promotions, the underlying algorithm could be adapted to consider other systematic events such as 

holidays and seasonality trends.  

The sales data is obtained from two large FMCG companies in Australia. The proposed model is 

tested using 253 time series from the case companies. The performance of the proposed model is 

compared with the current industry cases and well-established statistical and machine leaning models. 

Even though both businesses operate within the food and beverage industry, their product and 

promotion characteristics substantially differ in terms of product perishability and usage, as well as 

promotion frequency and magnitude of demand uplift, which to some extent helps the generalizability 

of our model application and study findings. This model can potentially aid sales forecasters and 

demand planners by reducing the complexity of the forecasting task and ease the cognitive load 

associated with processing vast amounts of unmodeled information (Lawrence et al., 2006).  

The remainder of this paper is structured as follows. Section 2 reviews the literature related to demand 



 4 

forecasting in a supply chain context, including the main quantitative and judgmental approaches as 

well as how they handle the impact of sales promotions. Section 3 describes the methodology 

employed in this study and explains the structure of the proposed time series regression model. Section 

4 focuses on validating the model and methodology using two empirical case studies. Concluding 

remarks are presented in Section 5 including the study limitations and future research directions. 

 

2    Related Literature 

A myriad of forecasting methods and models have been developed with the common goal of 

improving accuracy. In the following subsections, we review some of the quantitative (statistical and 

analytical) and judgmental forecasting approaches that are particularly concerned with addressing the 

impact of sales promotions. 

2.1   Quantitative forecasting methods  

Quantitative forecasting methods has evolved with advancements in computational power, software 

and information system technologies such as enterprise resource planning systems, electronic data 

interchange, and point of sale scanning (Sanders & Manrodt, 2003a). Such advancements have enabled 

vast amounts of data/information to be easily collected, utilized in more sophisticated statistical 

models, and shared throughout the supply chain. The core of most quantitative approaches to 

forecasting is extrapolation (Fildes et al., 2008). Extrapolative methods use purely historical data to 

predict the future. Of the extrapolative methods, exponential smoothing is one of the classical 

forecasting techniques and is widely practiced in industry (Fildes, 1992; Hyndman & Koehler, 2006). 

Exponential smoothing is a statistical technique that averages (smooths) time series data, differing 

from a simple moving average in that it assigns a larger weight to recent observations, and 

exponentially decreases the weight of observations over time. Several different variations of 

exponential smoothing exist (e.g., simple, Holt, Pegels, Holt-Winters, and variants of these with 

damped trends), where each method is suited for different forecast horizons (i.e., short-term or long-

range), seasonality types and trends in the time series (i.e., constant, additive or multiplicative) (Taylor, 

2003). Furthermore, the Auto-Regressive Integrated Moving Average (ARIMA) model (also known 

as Box-Jenkins model) along with its numerous variants (e.g., SARIMA, ARIMAX, ARMA-GARCH, 
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ARFIMA) are also widely utilized extrapolative methods as they can account for trends, seasonality, 

errors and non-stationary aspects of a time series (Nikolopoulos et al., 2011).   

The second main statistical forecasting approach is causal and multivariate methods, which have been 

largely developed by the study of econometrics data (Fildes et al., 2008). These methods are forms of 

regression analysis and assume that there is a cause-and-effect relationship between the dependent 

variable (i.e., demand) and one or more independent variables (explanatory factors influencing the 

demand). Causal and multivariate methods are capable of addressing the issue of a non-stationary time 

series by considering different exogenous variables such as promotions, holidays and special events 

that can impact customer demand (Fildes et al., 2008; Trapero et al., 2013). While there are many 

variables and vast amounts of information that can be included in forecasts, it is prudent to keep 

models as parsimonious as possible while maintaining desired accuracy. This is because multivariate 

models with a high number of explanatory variables have large data requirements, in addition to being 

prone to multicollinearity and dimensionality problems (Trapero, Kourentzes & Fildes, 2015).  

Despite the rapid evolution of technology and numerous advancements in statistical and analytical 

forecasting methods, large-scale empirical evidence from three seminal forecasting competitions 

(Makridakis et al., 1982; Makridakis et al., 1993; Makridakis & Hibon, 2000) consistently finds that 

“statistically sophisticated or complex methods do not necessarily produce more accurate forecasts 

than simpler ones” (Makridakis & Hibon, 2000, p. 452). This notion is also supported by Green and 

Armstrong (2015) who find that complexity of the forecasting method harms accuracy, and that 

simpler methods reduce the likelihood of errors as well as better aid the understanding of decision-

makers. Furthermore, complex forecasting techniques are not frequently utilized in industry due to 

high costs, lack of internal expertise and resources, as well as other organizational barriers (Trapero, 

Kourentzes & Fildes, 2015). We aim to address this concern in our study by presenting a simple and 

practical statistical model which captures the impact of systematic events, and yet still allows the 

forecaster to intervene and judgmentally incorporate the impact of less quantifiable contextual 

information. Therefore, the model and approach presented in this paper can be used as a more 

complete baseline forecast which would require fewer judgmental adjustments, if any at all. A 

substantial amount of research has been conducted over the years pertaining to judgmental forecasting 

and the integration of human judgment into statistical models. We briefly review this literature in 

Section 2.2.  
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2.2   The human factor in forecasting 

Academic literature has increasingly acknowledged the importance of human judgment in forecasting 

as they are highly connected (Lawrence et al., 2006). Despite the broadly acknowledged human factor 

in forecasting, much of the research on forecasting methods that emerged prior to the 1990’s advised 

against the use of judgment in forecasting (e.g., Armstrong, 1986; Hogarth & Makridakis, 1981). 

However, recent research advocates that statistical methods and human judgment should be integrated 

so that complementary benefits can be realized to mitigate the inherent weaknesses of each approach 

(Alvarado-Valencia et al., 2017; Baecke, De Baets & Vanderheyden, 2017; Blattberg & Hoch, 1990; 

Fischer & Harvey, 1999; Franses, 2008; Marmier & Cheikhrouhou, 2010).  

One important benefit of integrating statistical methods and human judgment relates to their capability 

to handle different types of information. Lawrence, O'Connor and Edmundson (2000) classify the 

information that is useful for forecasting into two classes: (1) historical data, and (2) contextual or 

domain knowledge. Historical data is simply the time series of historical product sales that has been 

recorded, and contextual knowledge being any other information relevant to interpreting, explaining 

and anticipating time series behavior. Examples of contextual information include: changes in 

promotional plans, competitor activities, market intelligence, sudden climate changes and dynamic 

influencers (e.g., political, media/press release, natural or manmade disasters).  

Contextual information is the primary factor that leads to instances when judgment is superior to 

statistical models (Webby & O'Connor, 1996). In fact, the major value-add that comes from human 

input is because forecasters possess contextual information, intimate product knowledge and 

experience that statistical models do not (Edmundson, Lawrence & O'Connor, 1988). Statistical 

methods are well suited to handle vast amounts of historical data, but when the effects of 

discontinuities (often caused by contextual factors) cannot be estimated from historical data, statistical 

methods tend to produce forecasts with sub-optimal accuracy (Gardner, 1985). Human judgment can 

be utilized to overcome this issue and incorporate valuable contextual information by adjusting 

baseline statistical forecasts, albeit with caution as there are also human factors that can hinder 

judgment (e.g., personal or social biases, heuristics, cognitive limitations, and system neglect) 

(Goodwin, 2002; Kremer, Siemsen & Thomas, 2015; Lawrence et al., 2006).  

The great efficiency and flexibility as well as demonstrated accuracy improvements that are realized 



 7 

through judgmental forecast adjustments (e.g., Fildes et al., 2009; Moritz, Siemsen & Kremer, 2014) 

have inevitably resulted in its widespread use in industry (Sanders & Manrodt, 2003b). Overall, the 

debate surrounding the practice of judgmental forecast adjustments has now evolved beyond merely 

whether they should be utilized or abandoned. The question is more how to appropriately use 

judgment to consistently improve the accuracy of forecasts. A common practical issue is that forecast 

adjustments are rarely performed systematically (Trapero et al., 2013), with experts often applying their 

knowledge and experience in an unaided and unstructured form (Green & Armstrong, 2007). This 

may lead to poor forecasting outcomes when compared to a structured approach. Ideally, a Forecast 

Support System (FSS) can be utilized to provide a baseline statistical forecast as well as structured 

guidance and feedback to effectively inform a forecaster (Fildes, Goodwin & Lawrence, 2006; 

Goodwin et al., 2011). The use of an FSS helps ease the cognitive burden on the human mind and 

consequently improve the accuracy of final forecasts (Adya & Lusk, 2016). The model developed and 

tested in this paper can act as the core of such an FSS. Adding additional features such as adaptive 

guidance to this base model can help develop a comprehensive and practical FSS.  

2.3   Promotional effects  

Sales promotions are common phenomena in contemporary retail operations. Evidence suggests that 

promotions are the leading cause for judgmental adjustments to statistical forecasts (Fildes & 

Goodwin, 2007; Goodwin, 2002). When a promotion occurs, a price discount is offered to customers 

for a specified time-period and a variety of additional actions are also taken to increase the prominence 

of a given product or service. The additional actions taken are associated with the promotional mechanics, 

which may include: type of promotion (e.g., single-buy, buy one get one free, multi-buy), display type 

(e.g., front of store, end of aisle), advertisement type (e.g., in-store, online, catalogue), and special 

features to coincide with holidays/events (e.g., Christmas oriented product labelling, free event-

oriented gift with purchase).  

There is normally an uplift in sales when promotions are offered. The uplift is often associated with 

purchasing acceleration, increased consumption and/or brand switching (Blattberg & Neslin, 1989). 

Moreover, consumers commonly stockpile products while they are on promotion (that is more the 

case for less perishable items) which often leads to lower sales in the following period(s). Different 

combinations of promotions result in different sales uplift, but the magnitude of the impact is 

associated with a high degree of uncertainty given the dynamic nature of consumer behavior. 
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Inevitably, such promotional effects complicate the forecasting process.  

The impact of sales promotions on demand has been previously explored and various models have 

been proposed (see for example Ali et al. (2009); Nikolopoulos et al. (2015); Ramanathan (2012); 

Ramanathan and Muyldermans (2011); Trapero et al. (2013)), yet quantifying the impact of promotions 

still proves to be problematic for practicing forecasters and academic researchers alike. There are 

several reasons why human judgment has been used in promotional sales forecasting. First, univariate 

statistical methods (e.g., exponential smoothing) only consider historical data and therefore do not 

account for the effects of future sales promotions in forecasts, unless promotions and corresponding 

effects are very consistent over time (Trapero, Kourentzes & Fildes, 2015). Although such methods 

are well suited for semi-automatically generating forecasts for numerous products, subsequent 

judgmental adjustment to account for contextual information is required. Second, judgment is 

particularly useful when little or no historical data is available such as when a new product or 

promotional campaign is offered (Oliva & Watson, 2009; Seifert et al., 2015). Judgment could also be 

beneficial in situations where large spikes in demand occur (significant promotions), because 

univariate statistical models disperse the effects of large changes over the entire horizon (Sanders, 

1992). This can result in inaccurate parameter estimation for promotional versus non-promotional 

periods.  

Sophisticated causal methods have also been proposed to handle the task of promotional forecasting 

(Fildes et al., 2008). These models are usually based on multiple regression with exogenous variables 

corresponding to various types of promotions. As opposed to judgmental forecasting which is 

practical and require few resources, such methods are highly complex, have demanding data 

requirements, and are difficult to interpret in terms of distinguishing the impact of individual 

promotional variables (Blattberg & Neslin, 1989; Trapero, Kourentzes & Fildes, 2015). Nevertheless, 

sophisticated forecasting models that account for the effects of promotions have been developed 

(Huang, Fildes & Soopramanien, 2014; Kourentzes & Petropoulos, 2016), in addition to promotional 

FSSs such as ‘SCAN*PRO’ (Van Heerde, Leeflang & Wittink, 2002), ‘PromoCastTM’ (Cooper et al., 

1999), and ‘CHAN4CAST’ (Divakar, Ratchford & Shankar, 2005). There have also been attempts to 

innovate promotional modeling techniques by utilizing structural equation models (Ramanathan & 

Muyldermans, 2010) and dynamic regression involving principal component analysis and transfer 

functions (Trapero, Kourentzes & Fildes, 2015). Despite all those efforts, evidence indicates that lack 
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of resources, expertise, and high costs hinder the widespread implementation of such methods and 

support systems in practice (Hughes, 2001). 

We aim to tackle this issue by introducing an easy-to-implement and practical model that can be used 

to incorporate the impact of systematic promotions into the statistical models. Promotions are a good 

example of systematic events, the impact of which could be quantified and incorporated into the 

statistical models to provide the forecaster with a more solid and accurate forecast. This enables a 

forecaster to only focus on incorporating dynamic information and less systematic events whose level 

of impact requires expert opinion and market intelligence. Our aim in this paper is to develop and 

validate a new model that is ‘simple’ and yet ‘practical and robust’ to produce baseline statistical 

forecasts which may then only require minor judgmental adjustments. An interesting feature of the 

proposed model is its ability to avoid large errors and poor performance when forecasting sales of 

substantially different scales (e.g., promotional and non-promotional sales). The methodology utilized 

to do so is discussed next. 

 

3  Methodology  

In the previous section we described some of the key demand forecasting approaches and how sales 

promotions can dramatically alter the behavior of consumer demand. We have realized that similar 

scenarios where time series behavior is subject to constant changes have been studied in a 

macroeconomic context (e.g., Giordani & Kohn, 2008; Giordani, Kohn & van Dijk, 2007; Hamilton, 

1989; Hamilton, 1990; Kim, Piger & Startz, 2008) and some of techniques and concepts utilized to 

tackle those situations could be applicable to a demand forecasting context. In particular, Hamilton 

(1989) developed a novel approach, the so-called Markov switching model, to more accurately capture 

and predict changes in the regime or state3 of non-stationary time series. Although, Hamilton initially 

applied his model to the United States gross national product data, his approach has provided the 

foundation to forecast the future values of any time series that exhibits a regime-switching behavior. 

We posit that in a product demand forecasting context, sales promotions can cause the time series to 

                                                 
3 The terms ‘regime’ and ‘state’ are used interchangeably throughout this paper and are defined as “episodes across 
which the dynamic behavior of the series is markedly different” (Hamilton 1989, p. 358). 
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abruptly enter different states. Therefore, the concept of Hamilton’s model can be applied to define 

demand states by which we can structure systematic promotional information and embed it in a 

statistical forecasting model. Motivated by Hamilton’s regime switching idea, we develop a time series 

regression model by exploiting the time series data and information related to systematic events to 

capture sales dynamics in all periods and forecast future demand. To the best of our knowledge, this 

is the first attempt in demand forecasting literature to use a regime-switching approach to quantify the 

impact of systematic events. 

Initially, a list of potential systematic events along with their associated levels of impact on product 

sales can be obtained from a company’s forecasting experts. Given that these are often the same events 

that forecasters are already making routing judgmental adjustments to account for, it is reasonable to 

assume forecasters can generate a list of such events. Once identified, the most significant systematic 

events and levels can be verified through statistical analysis (e.g., Analysis of Variance (ANOVA)). 

The most significant systematic event for both the companies investigated in this paper is sales 

promotions. Therefore, all data pertaining to the various promotions ran for each product was 

gathered; including the promotion type, display type and advertisement type. This included information 

regarding the associated levels of impact (e.g., the ‘promotion type’ can take two possible levels: major 

and minor). Regression models were then constructed, validating the significance of each promotional 

variable with F-tests (ANOVA) by adding one at a time and comparing each new model with the 

previous one. If the variable was not significantly improving the fit of the model, it was removed.  

Next, combinations of the levels of the most significant systematic events can be constructed, where 

each combination is called a state. This is a crucial element of our model and an important contribution 

of this paper because the procedure to establish various Demand Uplift States (DUS) can be done 

systematically. Sales uplifts in promotional periods are computed by subtracting baseline forecasts 

from the actual realized sales value in each epoch. In this research, we use historical baseline forecasts 

and the corresponding realized sales figures provided by two case companies. Both case companies 

generate their baseline forecasts using simple exponential smoothing. However, baseline forecasts can 

be estimated with numerous models such as those discussed in Section 2.1 (e.g., ARIMA, causal and 

multivariate methods). The DUS algorithm is summarized as follows: 

Step 0. Input demand time series and a list of potential systematic events along with their possible 

levels. 
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Step 1. Find the most significant systematic events by running ANOVA over the data.  

Step 2. Construct all possible combinations of the levels of significant systematic events and label them 

from 1 to k, where k is the total number of combinations.  

Step 3. For i=1 to k do 

Compute the average demand uplift for the ith combination. 

end for 

Step 4. Put each combination with distinct uplifts in demand in one state.  

return Demand uplift states labelled 1 to m, where m is the total number of states constructed in Step 

4. 

Let us consider sales promotions in retail industry as a case example for a significant systematic event. 

The common practice in the retail industry is for the retailers and suppliers to negotiate and set 

promotional plans well in advance of their occurrence. For instance, the case companies in this paper 

lock in their promotional calendars for the following calendar year. In addition to timing of each 

promotion, the specific promotion details (also referred to as promotional mechanics) are decided. 

However, promotional plans may be altered during the year for a variety of reasons. Examples include 

extending the well-performing promotions, adding extra promotions to induce sales for stock that is 

near expiration, and changing dates of promotions due to inclement weather. But final changes are 

normally locked at least four weeks prior to the promotion commencement. Therefore, given that 

promotional plans are finalized prior to preparing a forecast, the DUS algorithm can be effectively 

utilized to determine future states. If any change in promotional plans is realized, the algorithm can 

be easily re-run to accommodate abrupt variations. If a new significant level of the combination of 

promotions is offered, based on the potential impact on consumer behavior, forecasters can either 

assign it to one of the current demand uplift states (Step 4 of the DUS algorithm), or define a new 

state depending on the magnitude of its effect.  

Following the DUS algorithm, we introduce our new time series regression model – the Forecasting 

Systematic Events (FSE) model – formulated in Equation 1. 

𝑋𝑋𝑡𝑡 = 𝛼𝛼0 + ∑ 𝜙𝜙𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖 + 𝑝𝑝
𝑖𝑖=1 ∑ 𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖 + 𝑞𝑞

𝑖𝑖=1 ∑ 𝛽𝛽𝑗𝑗𝑆𝑆𝑗𝑗𝑡𝑡𝑚𝑚
𝑗𝑗=1 + 𝜀𝜀𝑡𝑡    (1) 

In this equation, 𝑋𝑋𝑡𝑡 is the demand at time 𝑡𝑡, 𝑆𝑆𝑗𝑗𝑡𝑡 is the demand uplift state variable at time 𝑡𝑡 (taking 

value of one if demand uplift is in state 𝑗𝑗 at time 𝑡𝑡 and zero otherwise), 𝜀𝜀𝑡𝑡 represents a Gaussian White 
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Noise process, 𝛼𝛼0 is constant, 𝜙𝜙𝑖𝑖 ,𝜃𝜃𝑖𝑖 and 𝛽𝛽𝑗𝑗 are unknown parameters that will be estimated by the 

time series data and the DUS algorithm output, 𝑝𝑝 is the number of past sales values regressed in the 

model, 𝑞𝑞 is the order of moving average, and 𝑚𝑚 is the total number of sales uplift states prescribed by 

the DUS algorithm. 

The FSE model has two components: (i) the first two terms on the right-hand side, which form an 

ARIMA model of order 𝑝𝑝 and 𝑞𝑞 to capture the underlying time series (i.e., the time series in the 

absence of systematic events), and (ii) regression over the demand uplift state variable 𝑆𝑆𝑗𝑗𝑡𝑡 to model 

the effect of systematic events. When there is no event at time period 𝑡𝑡, all state variables in that time 

period are equal to zero and the FSE model is simplified to an ARIMA model of order 𝑝𝑝 and 𝑞𝑞. The 

FSE model assumes that the underlying time series is stationary. Consequently, if there exists a trend 

in the mean of the underlying time series, the sales variable 𝑋𝑋𝑡𝑡 can be replaced with a sales variable 

differenced in an appropriate lag to convert it to a stationary time series. Importantly, the FSE model 

differs from a conventional ARIMA model with exogenous regressors (ARIMAX). Although the FSE 

model uses ARIMA to estimate the baseline model, it utilizes the DUS algorithm to determine and 

embed the regressors as opposed to ARIMAX that concurrently fits an ARIMA model to the entire 

dataset and uses regressors to account for changes in the series’ dynamics. To demonstrate the 

application and predictive capabilities of this model, we apply it in empirical case studies in Section 4.  

 

4  Model Validation  

Sales data for 253 products obtained from two FMCG companies in Australia are considered to 

investigate the validity and practical relevance of our proposed methodology. Both companies are 

major players in the food and beverage industry who supply most retailers nationally. We refer to these 

companies as Company A and Company B for anonymity reasons. In both cases, the supply chain 

consists of a single supplier (i.e., the case company) satisfying the demands of multiple retailers across 

the country. Time series data was provided by both companies in a weekly format including the actual 

sales, baseline statistical forecasts, final forecasts, and promotional mechanics. The datasets were 

amalgamated to perform our statistical testing. Results are reported on the entire large dataset so that 

there are enough observations to ensure generalizability. 
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The data has some notable characteristics. Both companies produce baseline statistical forecasts using 

an exponential smoothing model – which has shown to be a common industry practice (Hyndman et 

al., 2008). These baseline forecasts are regularly adjusted by a panel of experienced forecasters to 

consider the impact of promotions and other contextual information in the final forecast. We refer to 

the forecast generated by the companies as “Case forecast”. The forecasting teams within each 

company consist of several experts, with their work experience varying from 2 to 20 years. There is, 

however, no specific procedure in place for identifying and modeling different types of promotions 

or structuring contextual information of any type. The DUS algorithm and FSE model can be utilized 

to tackle this matter.  

Although the case companies produce their forecasts in a similar fashion, the shelf life (i.e., a function 

of product perishability) and frequency of promotions vary from one product to another. For example, 

Company A’s products are less frequently promoted but the impact on sales is larger (i.e., promotional 

sales can exceed 60 times larger than non-promotional sales). Company B’s products are more 

frequently promoted but the impact on sales is smaller compared to Company A. The natural 

logarithm of sales data was used in our model to stabilize the variance. Testing our new forecasting 

methodology on numerous products with differing demand patterns demonstrates its applicability, 

rigor and efficacy. 

The DUS algorithm was first run to identify different demand states. ANOVA revealed that 

‘promotion type’ and ‘display type’ are the most significant factors during promotions for Company 

A. This verified the opinion of forecasting experts at Company A who stated that these were some of 

the most influential factors affecting promotional sales. ‘Advertising type’ did not significantly change 

the promotional sales and it was, therefore, not included as a promotional variable in this model4. 

Promotion type relates to the depth of the discount offered and can take on one of the two possible 

levels: ‘major’ and ‘minor’.  Major and minor promotions are typically associated with discounts of 

approximately 50% and 30% off regular price, respectively. The ‘display type’ factor can also take one 

of the four possible levels including: ‘entrance’, ‘Front Gondola End (FGE)’, ‘other gondola’, or 

‘fixture’. Display type relates to the location in the store where products are displayed. Entrance display 

                                                 
4 The advertisement type for Company A was not significant because both major and minor promotions for the 
investigated products were advertised in the retailer’s local weekly catalogue. In addition to the local advertisement, 
major promotions were advertised by default as part of the retailer’s national campaign and they could not be separated 
into individual factors. There were no other advertisement types utilized by Company A for the products investigated.  
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types are special out of aisle product displays positioned near the entrance of retail stores. Entrance 

displays are the most expensive in-store location for product placement but have the most impact on 

customer purchasing behavior. The FGE displays are at the end of aisles located nearest the front of 

the store, whereas other gondola displays may be at the end of an aisle but located near the back of 

the store. Fixture displays are in the aisle of the store that the product is normally located, where there 

is no additional shelf space for the promotional displays.  

Table 1 illustrates a sample of the possible states for a product at Company A. Although, theoretically, 

there are eight possible combinations of the levels of the two promotional types, based on available 

data, the DUS algorithm prescribes five uplift states. The empty cells in Table 1 correspond to 

infeasible combinations in practice. For instance, the combination of ‘minor’ promotion type and 

‘entrance’ in display type was not an allowed (feasible) combination by the company. That is, only 

products that were being offered on ‘major’ promotion were displayed at the store entrance. The DUS 

algorithm was implemented on other products and corresponding states were determined accordingly. 

Note that the promotional states and magnitude of sales uplift may slightly differ for various products.  

Table 1: Promotional states identified by the DUS algorithm (average sales uplift in parentheses) 

 Display Type 

Promotion Type           Entrance FGE Other Gondola Fixture 

Major State 1 (19816) State 2 (14833) - - 

Minor - State 3 (5091) State 4 (3466) State 5 (4121) 

 

Promotion type’ and ‘advertisement type’ are the only two promotional mechanics found to be 

significant variables in our model for Company B (confirmed by forecasting experts and ANOVA). 

The ‘promotion type’ factor can take on one of the two possible levels including ‘single buy’ and 

‘multiple buy’. Promotion type relates to whether a promotional discount is offered for a single 

product or multiple product purchases (e.g., buy one for $25, two for $40, or three for $50). 

‘Advertisement type’ relates to how/where the promotion is advertised, for which the variable can 

take on one of the three possible levels: ‘catalogue’, ‘minor catalogue’ or ‘in-store’. Both promotional 

mechanics prove to be statistically significant at the 5% level. Although there are six possible 

combinations of the levels of the two promotion types, based on available data, the DUS algorithm 
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prescribes five demand uplift states, as shown in Table 2. According to the DUS algorithm, two 

different combinations including the ‘single buy’ promotion type with the ‘in-store’ advertisement type 

as well as the ‘multiple buy’ promotion type with the ‘in-store’ advertisement type are grouped in State 

4.  

Table 2: Promotional states identified by the DUS algorithm (average sales uplift values in parentheses) 

 

Promotion Type 

Advertisement Type 

Catalogue In-Store Minor Catalogue 

Single buy State 1 (311) State 4 (16) State 2 (213.3) 

Multiple buy State 3 (160.48) State 5 (15.8) State 6 (7.3) 

 

Once the states were identified using the DUS algorithm, the FSE model was utilized to generate 

forecasts. The first 80 weeks of historical data was used as a training-set, and the last 20 weeks as a 

test-set to evaluate the performance of the FSE model. More precisely, we fit the FSE model to only 

include the first 80 weeks of sales data for both Companies A and B products and then use this fitted 

model to forecast demand for the next 20 time periods. The KPSS test was implemented on the 

baseline time series to test the stationary of time series at the significance level of 5%. An ARIMA 

model of order 𝑝𝑝 and 𝑞𝑞 that yielded the lowest AICc, was chosen as the best fit. The orders are 

automatically selected with using the Hyndman and Khandakar (2007) algorithm. Thus, we set the 

order parameters 𝑝𝑝 and 𝑞𝑞 in the FSE model. The range of 𝑝𝑝 and 𝑞𝑞 vary between one and three.  The 

model was coded and implemented in the R 3.6.1 programming language where parameters are 

estimated, and forecasts are generated. To demonstrate the validity of the fitted FSE model, diagnostic 

tests and residual analyses were performed (i.e., independent and homoscedastic residuals, normality, 

Ljung-Box test to check the fitness of models at a 5% level of significance).  

The accuracy of forecasts is analyzed in the following subsection using different forecast accuracy 

metrics as well as benchmarking the forecasts produced by the FSE model against some of the 

sophisticated demand forecasting techniques.  
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4.1   Model accuracy and benchmarking 

Different criteria have been used by researchers and practitioners to gauge the effectiveness of a 

forecasting model. It is of utmost importance to select appropriate error measures when evaluating 

forecast accuracy (Davydenko & Fildes, 2013). Since the scale of sales dramatically changes and differs 

for the investigated products, we explore the performance of models with scale independent metrics. 

To ensure consistency and comparability with previous studies (e.g., Baecke, De Baets & 

Vanderheyden, 2017; Fildes et al., 2009; Hyndman & Koehler, 2006; Kourentzes & Petropoulos, 

2016), we utilize Mean Absolute Scaled Error (MASE) as the primary accuracy measure in our analyses 

as it is scale independent. The MASE is computed using Equation 2,  

𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 = 1
𝑛𝑛
∑ |𝑓𝑓𝑡𝑡−𝑥𝑥𝑡𝑡|

∑ |𝑥𝑥𝑡𝑡− 𝑥𝑥𝑡𝑡−1|
𝑚𝑚−1

𝑚𝑚
𝑡𝑡=2

𝑛𝑛
𝑡𝑡=1  ,                     (2)   

 
where 𝑓𝑓𝑡𝑡 is the forecast value at time 𝑡𝑡, 𝑥𝑥𝑡𝑡 is the actual sales at time 𝑡𝑡, and 𝑛𝑛 is the length of out-of-

sample size. MASE is a metric that assesses the accuracy of forecasts against a naïve forecasting model. 

The denominator of Equation 2 is a simple naive model where 𝑚𝑚 is the length of within sample size. 

The forecasts obtained from the FSE model are also benchmarked against some of the common 

demand forecasting techniques to gauge its effectiveness. The well-known ARIMA model is chosen 

as a widely accepted standard benchmark for product demand forecasting (Hyndman & 

Athanasopoulos, 2014). We also benchmark against ARIMAX as an extension of its univariate form, 

ARIMA, which accounts for promotional information. ARIMAX is implemented automatically using 

the ‘TSA’ package in R (Chan et al., 2018).  

Support Vector Regression (SVR) and Regression Trees (RT) are implemented as two common and 

successful machine learning models that have been employed in numerous studies to forecast 

promotional sales (e.g., Abolghasemi et al., 2020; Ali et al., 2009). SVR employs a kernel function to 

transfer low dimensional data to high dimensional data where the kernel function can take on several 

different forms. Different kernel functions were trialed including poly, RBF, and a linear function. A 

grid search was also used to choose the best combination of the kernel function, kernel coefficient (𝛾𝛾) 

and cost function (𝐶𝐶). A sequence of intervals of width 0.1 (ranging from 0 to 1) were ran for 𝛾𝛾, and 

on a sequence of intervals of width 1 (ranging from 0 to 100) for 𝐶𝐶. The model was fit using the ‘SVM’ 

function from the ‘e1071’ package in R (Dimitriadou et al., 2006) and the model that resulted in the 
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highest accuracy was selected. An RT is a decision tree that splits the dataset into smaller groups called 

branches and fits a linear regression to each group. RT models are a powerful class of Classification 

and Regression Tree (CART) that have been successfully used for demand forecasting (Breiman, 

2017). We fit RT using ‘RT’ function with ‘ANOVA’ splitting in the ‘Rpart’ package in R (Therneau 

et al., 2015). 

4.2   Empirical results 

The summary results of forecasting models and the significance of differences are reported in Table 

3 and Table 4, respectively. Notably, the average accuracy of models is close to one another with FSE 

model outperforming other models, on average. The FSE model outperforms the standard ARIMA 

model. This is not surprising as ARIMA does not account for promotional information while our 

model factors in promotional information as external regressors. The results obtained from our model 

outperform those obtained from ARIMAX and the commonly practiced judgmental techniques 

employed by the case companies. The results for mean of MASE is different from median of MASE. 

While the Case forecasts are more accurate than SVR and RT, on average, the SVR and RT models 

have higher accuracy in terms of median MASE. However, the FSE model still outperforms others in 

terms of median of MASE. This indicates that DUS algorithm has effectively defined the states of 

systematic events utilized in the FSE model and avoids generating poor forecasts.   

Table 3: Forecast accuracy in the test-set period 

 FSE ARIMAX Case SVR RT ARIMA 

MASE 
(Mean) 

0.618 0.643 0.618 0.698 0.622 0.691 

MASE 
(Median) 

0.458 0.486 0.485 0.477 0.465 0.578 

 

Table 4: Comparing the performance of forecasting models (p-values of pairwise t-tests) 

 ARIMAX Case SVR RT ARIMA 

FSE 0.0467* 0.014* 0.238 0.938 0.015* 

ARIMAX  0.008* 0.446 0.776 0.008* 

Case   0.001* 0.013* 0.063** 

SVR    0.271 0.001* 
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RT     0.014* 
 *Significant at α = 0.05 
 **Significant at α = 0.1 

From Table 4, there is a statistically significant difference between the results of the FSE model and 

those obtained from ARIMAX, the case companies, and ARIMA. However, there is no significant 

difference between the FSE and machine learning methods (SVR and RT). Although, the FSE method 

is simpler to apply and yet produces more accurate forecasts, on average, while it also better handles 

extreme observations. This is also evident in Figure 1.   

Figure 1 shows the scatter plot of forecast accuracy for different models with respect to normalized 

sales. We normalized sales by finding the average for each series; enabling the performance of different 

models to be compared across series with different scales. From Figure 1, while the FSE model 

produces competitive forecasts, on average, it avoids generating poor forecasts. The fact that the FSE 

model shows the most robust performance is commendable since one important aspect of forecasting 

is to avoid wild forecasts that substantially miss the actual values (Shaub, 2020). It can be seen that the 

ARIMA, SVR and RT models have significantly greater risk of poor performance than other models 

despite producing relatively accurate forecasts in many occasions. We further investigated the series 

that have performed poorly (i.e., the series with MASE mean greater than 2). There are 31 unique 

series in total that corresponds to 31 products. One common feature among all these series is that 

they all have at least one major promotional period in the test set. We observe that the forecasting 

model misbehaves in the promotional periods.  This causes a large error on average, despite the relative 

accuracy of the model in non-promotional periods.  Note that the scale of MASE differs for different 

models. For example, the forecasts that are generated in the case studies and the FSE model has a 

smaller scale of MASE. Both the case company techniques and FSE models use judgment to forecast 

sales. While the former uses judgment subjectively, the latter uses the DUS algorithm to objectively 

consider promotional information in the model. This is a considerable achievement and a significant 

step towards the objective use of human judgment in forecasting (Goodwin, 2020). 
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Figure 1: Forecast accuracy (MASE) of different models 

4.3   Discussion 

Section 4.2 showed the robustness of the FSE model featuring consistency in generating accurate 

forecasts while avoiding forecasts with large errors – a competitive advantage over those benchmarked 

against. We now turn our attention to determine the conditions upon which the FSE model could 

outperform the others. Specifically, we investigate the promotion impact on the forecasting accuracy 

of models because the FSE model is motivated by modeling systematic events (e.g., promotional 

information), which is also the primary focus of this paper. Since the nature of series and scales of 

sales are different during promotional periods than non-promotional periods, the promotional 

observations are separated from non-promotional ones and the results are analyzed individually. There 

is a total of 4831 promotional observations in the training set and there are 966 promotional 

observations over the test set. 

Table 5 shows the forecast accuracy of models in the presence (absence) of promotions and Table 6 

shows the significance of difference between forecasting models after applying pairwise t-tests. As 

shown in Table 5, all models have higher accuracy and perform better in the absence of promotions. 
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The results are however different during the promotional periods. The FSE model outperforms other 

models during the promotions, while it is ranked third for non-promotional periods. On the other 

hand, the ARIMA model has the highest accuracy during non-promotional periods despite the poor 

performance during promotional periods. This indicates how significantly promotions can impact the 

performance of forecasting models, and more importantly how effectively the FSE model can 

outperform the other methods in forecasting the promotional sales.  

Table 5: Forecast accuracy (mean of MASE) in the test-set period (rank in parenthesis) 

 FSE ARIMAX Case SVR RT ARIMA 

Promo 1.457 
(I) 

1.650 
(II) 

1.750 
(IV) 

1.751 
(V) 

1.686 
(III) 

1.784 
(VI) 

Non- 
Promo 

0.245 
(II) 

0.274 
(IV) 

0.274 
(IV) 

0.276 
(VI) 

0.273 
(III) 

0.235 
(I) 

 
 

Table 6: Comparing the performance of forecasting models in the presence of promotions (p-values of 
pairwise t-tests; promotional periods in upper-right half and non-promotional periods in lower-left half of 

table) 

 FSE ARIMAX Case SVR RT ARIMA 

FSE  0.009* 0.080** 0.989 0.568 0.013* 

ARIMAX 0.039*  0.035* 0.393 0.741 0.010* 

Case 0.004* 0.079**  0.082** 0.198 0.043* 

SVR 0.771 0.476 0.004*  0.563 0.013* 

RT 0.367 0.611 0.027* 0.230  0.036* 

ARIMA 0.190 0.018* 0.001* 0.004* 0.053*  
 *Significant at α = 0.05 
 **Significant at α = 0.1 
 

From Table 5, we can see that the performance of different models changes during promotional and 

non-promotional periods. Some methods may not be able to capture the underlying demand for spikes 

or troughs, and consequently, may overfit or misbehave as they encounter these observations (Ord, 

2020). However, our proposed method benefits from regime-switching approach and uses 

promotional information objectively to estimate the promotional sales and effectively switches to 

another model (ARIMA) to forecast the baseline sales. This approach avoids any forecast error to be 

carried forward from the previous observations. The significance of this approach is more pronounced 



 21 

during promotions when forecast misbehavior would be more costly to the supply chain.   

The gray cells on the lower half of Table 6 show the p-values of paired t-tests to test if there is any 

significant difference between each pair of models during non-promotional periods. The upper half 

of the table shows if there is any significant difference between each pair of models during 

promotional periods. The results are dissimilar for promotional and non-promotional periods. During 

promotional periods, the ARIMA model produces significantly different (worse) forecasts from other 

models. The FSE model generates significantly more accurate forecasts than the ARIMAX, the case 

companies, and the ARIMA models. The case companies model has a significantly different 

performance to all other model except ARIMAX. However, there is no significant difference between 

the forecasts generated by SVR and RT and those generated by the FSE model. The similarity of RT 

and FSE is interesting since the DUS algorithm used in the FSE model mimics a similar approach to 

RT that tries to partition the dataset to similar subsets. During non-promotional periods, the FSE 

generates significantly different forecasts compared to the others, but again there is no statistically 

significant difference between FSE forecasts and the forecasts of ARIMA, SVR and RT models. 

Despite the machine learning methods appearing to effectively capture the effects of sales promotions, 

these methods can be highly complicated in real world applications; hence not always the preferred 

methods in industry.  

Our aim in this paper was to provide a robust, yet simple and practical, method to effectively model 

systematic events and produce reliable forecasts. The approach allows experts’ judgment to be 

objectively structured (using the DUS algorithm) in a regime-switching approach to forecast time 

series that are impacted by systematic events (e.g., sales during promotional and non-promotional 

periods). We developed a pragmatic approach (DUS algorithm and FSE model) that can incorporate 

promotional information objectively into a forecasting model whose advantage is not just to generate 

reliable, competitive forecasts, but to also avoid wild forecasts with large errors caused by the series 

entering different states. The FSE model reduces the forecast error in promotional and non-

promotional periods by effectively identifying various demand states and using appropriate model that 

takes into account the relevant information to forecast sales. 

5  Conclusions  

In this paper, we propose a time series regression model that structures and embeds systematic 
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contextual information that would otherwise be incorporated with unaided human judgment. 

Structuring is achieved using an approach, called DUS algorithm, that systematically defines demand 

uplift states for combinations of levels of factors that contribute to demand uplifts. The factors to 

consider in DSU algorithm are provided by expert forecasters allowing the model to also benefit from 

expert knowledge. Once the demand uplift states are identified, they are incorporated into a 

forecasting model, called FSE, which considers the impact of systematic events to forecast the future 

demand. 

The proposed model and methodology were applied to prepare forecasts for 253 products/time series. 

We find that the systematic event structuring and forecasting approach can remarkably improve 

accuracy when compared to the judgmentally made forecasts by the company forecasters (i.e., 

experienced forecasters making judgmental adjustments to baseline statistical forecasts). Forecast 

accuracy improvements were demonstrated from the companies’ dataset using MASE and 

benchmarking techniques. We consider this as the key practical contribution of this model since the 

improved forecast accuracy brings about substantial cost savings according to our industry partners. 

Indeed, for FMCG companies who forecast for thousands of products on a routine basis, more 

accurate forecasts – through minimizing judgmental adjustments to incorporate systematic events – 

can save substantial time and money.  

The FSE model is simple and practical in generating competitive and robust forecasts. This model is 

also shown to effectively capture various demand states which is essential in avoiding extremely poor 

forecasts (i.e., wild forecasts with large errors). One advantage of the FSE model is the ease with which 

it allows translating systematic information into demand states. We show in this paper that this can be 

an effective approach to account for the impact of systematic events such as sales promotions. The 

difficulty, however, is that the DUS algorithm used to identify demand uplift states is not automated 

and hence requires substantial time investment when forecasting for a large number of products. We 

see automating this process – for example, using feedback systems and machine learning approaches 

– as one important direction for future research. The positive side is that the DUS algorithm that 

informs the forecasting model does not need to be executed over and over in every forecasting period. 

Once the demand uplift states are identified, the FSE model can just rerun using the fixed states until 

new events with different characteristics appear which may then the DUS algorithm to be updated. 

Another limitation of the proposed approach is the need to have access to sufficient historical data to 
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identify demand uplift states. And for this reason, the FSE model may not be well suited for new 

products for which the historical sales data is unavailable. This seems to be a common limitation of 

most statistical models which reply on historical data. 

Despite the ease of use, the FSE model can improve forecast accuracy through mitigating the use of 

unstructured information which seems to be an undeniable part of judgmental forecast adjustments 

in practice. Part of the uncertainties in demand forecasting roots in how different forecasters evaluate 

the potential effects of contextual information. For example, different forecasters may have different, 

potentially contrasting, opinions about the impacts of various promotions. Variations could be caused 

by psychological reasons or could be due to different experiences, market and supply chain knowledge, 

access to information, or targets to achieve (Oliva & Watson, 2009). Our model helps overcome such 

issues as it allows a forecaster to objectively capture the corresponding effects of different quantifiable 

systematic events such as promotions.  

The model and approach developed in this paper is the first attempt to apply concept of regime-

switching to define demand states to capture the effects of systematic events. The resulting forecast 

could be obviously further adjusted by the forecasters to incorporate less quantifiable contextual 

information and the impact of events that cannot be systematically formulated. Our study thus 

contributes to the call for further research in structuring the use of human judgment in forecasting  

(Green & Armstrong, 2007), particularly for products that are prone to sporadic perturbations (De 

Baets & Harvey, 2018). In the future, the FSE model could also be applied and tested on data at a 

more disaggregate level (e.g., store, town and/or district level). 

Our research also provides insights for innovative FSS design, especially the need for structured 

support to assist with filtering and integrating information (Fildes, Goodwin & Önkal, 2018). Future 

research may investigate how this model could be embedded in an FSS so that forecasts for a large 

number of products are produced semi-automatically. By doing so, judgmental adjustments to 

forecasts can be more systematic and hassle-free (the use of an FSS can help reduce the cognitive 

burden on forecasters), and the chance of accounting for the same information twice in demand 

planning and S&OP would be reduced.   
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